
Autonomic Nervous System – A Quick Review of Clinical Concepts Cardiology 63 and 64

Jim Powers, DO, FACEP, FAAEM

1. Beta Blocker Toxicity

a. Beta Receptors - review

- i. B1 receptors are coupled to <u>Gs-proteins</u>, which activate adenylyl cyclase to form <u>cAMP</u> from ATP. Stimulation of β -receptors results in <u>\ CAMP</u> levels in the cell.
- ii. ↑ cAMP activates a cAMP-dependent protein kinase (PK-A) that phosphorylates L-type calcium channels, which causes increased calcium entry into the cell.

iii. B-1 - receptors in the heart

- 2. PK-A also phosphorylates sites on the SR, which leads to increased release of calcium through the ryanodine receptors (<u>ryanodinesensitive</u>, <u>calcium-release channels</u>) associated with the SR.
 - a. Provides more calcium for binding <u>troponin-C</u>, which then <u>increases contractility</u>.
- 3. PK-A can phosphorylate myosin light chains, which may contribute to the positive inotropic effect of β stimulation.
- 4. Gs-protein activation also increases heart rate.

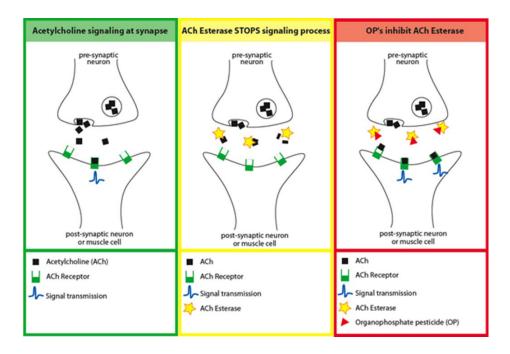
iv. **B-2 Receptors**

- 1. Vascular smooth muscle
 - a. β2-receptors are activated by norepinephrine released by sympathetic adrenergic nerves or by circulating epinephrine.
 - b. These receptors are coupled to a Gs-protein, which also stimulates the formation of cAMP.
 - c. Although \uparrow cAMP enhances cardiac myocyte contraction, in vascular smooth muscle an \uparrow in cAMP leads to smooth muscle relaxation and vasodilation
 - d. <u>Why?</u> cAMP <u>inhibits</u> myosin light chain kinase responsible for phosphorylating smooth muscle myosin. Thus, ↑ in intracellular cAMP caused by β2-agonists inhibits myosin light chain kinase thereby producing less contractile force.
 - e. Blockade of β2-receptors causes a small degree of vasoconstriction by removing the small β2-receptor vasodilator influence which normally opposes the more powerful alphaadrenoceptor mediated vasoconstrictor effects.

2. Bronchial smooth muscle

- a. Same mechanism as in vascular smooth muscle
- b. In **bronchial smooth muscle** an \uparrow in cAMP leads to smooth muscle relaxation and therefore **bronchodilation**.
- c. Blocking the β -2 receptors will therefore inhibit this bronchodilation and lead to bronchoconstriction.
- b. B-blockers modulate activity of myocyte & vascular smooth muscle contraction by Ca⁺⁺ entry into the cell.

	Normal Response to Receptor Stimulation	Effects of Receptor Blockade	
B1-receptors in heart	↑ contractility, ↑ HR, ↑ CO	\downarrow Contractility, \downarrow HR, \downarrow CO, hypotension	
β2-receptors in bronchial smooth muscle	Smooth muscle relaxation with bronchodilation	Bronchoconstriction* Wheezing, dyspnea, 个 RR	
β2-receptors in vascular smooth muscle	Smooth muscle relaxation with mild vasodilation	Loss of β2 receptor induced vasodilation resulting in unopposed α-1 vasoconstriction Skin is pale and cool	


Note: Clinically β -blockers actually have relatively little vascular effect because β 2-adrenoceptors have only a <u>small</u> modulatory role on basal vascular tone. Nevertheless, blockade of β 2-adrenoceptors is associated with a <u>small degree of vasoconstriction</u> in many vascular beds.

- *Remember that bronchoconstriction is found with non-selective β-blockers such as propranolol (due to their blockade of both β-1 and β-2 receptors).
 - \circ Propranolol is also the **most lipophilic** β-blockers can cross blood-brain-barrier and cause **altered mental status**
- Selective β-blockers such as atenolol, esmolol, and metoprolol will typically not produce bronchoconstriction unless at very high doses (in which case they behave more like non-selective blockers).
- <u>Esmolol</u> has a very **short half-life** and can only be **given IV** thus often used to control tachyarrythmias in the perioperative setting.

- c. Common drugs used to treat β-blocker overdose (can be considered "first line")
 - i. <u>Vasopressors Epinephrine and Norepinephrine</u>
 - 1. Vasopressors used in the treatment of β-blocker overdose
 - 2. Epinephrine
 - a. Activates β1 and β2 receptors
 - b. Results: ↑ contractility, ↑ HR, ↑ CO, ↑ BP, bronchodilation (↓ wheezing and dyspnea)
 - 3. Norepinephrine
 - a. Primarily an agonist at α₁-adrenergic receptors, with modest
 β₁-adrenergic activity
 - b. Many guidelines suggest norepinephrine before using epinephrine due to the increased risks associated with epinephrine infusion (tachyarrhythmias, splanchnic hypoperfusion, metabolic abnormalities).
 - 4. Often need very high doses of vasopressors due to the β -blockade
 - ii. Glucagon
 - Independently activates myocardial adenylate cyclase, bypassing the impaired β-receptor see figure above
 - 2. Produces same sympathetic NS effects as stimulation of the actual β receptors by epi / norepinephrine
- d. Other autonomic drugs that are $\frac{\text{not}}{\text{post}}$ generally $\frac{\text{useful}}{\text{other}}$ in treating β -blocker toxicity
 - i. Phenylephrine a pure alpha agonist and won't ↑ heart rate or contractility
 - ii. <u>Dobutamine</u> a **positive inotrope** but does not have any significant chronotropic effect. <u>Won't ↑ heart rate</u> which is an important component of improving cardiac output.
 - 1. Dobutamine can also cause **vasodilation** which could **worsen hypotension**
 - iii. Atropine inhibits parasympathetic action on heart by blocking muscarinic receptors, but the problem in a β -blocker overdose is not excessive parasympathetic activity but blockade of the sympathetic NS.

2. Organophosphate poisoning

- a. Organophosphate compounds (which can include insecticides and chemical nerve agents) inhibit the enzyme **cholinesterase**
- Inhibition of cholinesterase leads to acetylcholine accumulation at nerve synapses and NMJ resulting in overstimulation of acetylcholine receptors – excess parasympathetic activity
- c. Excess acetylcholine results in a **cholinergic crisis** with both central and peripheral findings

http://depts.washington.edu/opchild/acute.html

d. Classic clinical presentation due to effects of excessive parasympathetic activity

i. SLUDGE

- 1. S: Salivation
- 2. L: Lacrimation
- 3. U: <u>U</u>rinary incontinence
- 4. D: Defecation
- 5. G: GI distress
- 6. E: Emesis

ii. DUMBELS

- 1. D: Defecation
- 2. U: Urination
- 3. M: Muscle weakness; miosis
- 4. B: Bradycardia, bronchorrhea, bronchospasm* (Killer B's)
- 5. E: Emesis
- 6. L: Lacrimation
- 7. S: Salivation

e. Management

- i. Atropine most important
 - Competitive antagonist of acetylcholine at central & peripheral muscarinic receptors
 - 2. Reverses effects of excessive cholinergic stimulation
 - 3. Does not work at nicotinic receptors will not reverse muscle weakness
- ii. **Pralidoxime** (2-PAM Chloride)
 - 1. Displaces organophosphates from active site of acetylcholinesterase reactivates the enzyme
 - 2. Must be given as soon as possible for maximum effectiveness. The organophosphate (or nerve agent) / acetylcholinesterase complex "ages" and the longer they are bound, the less likely that pralidoxime will be able to displace the organophosphate from cholinesterase and regenerate the enzyme.

I will not test you on these ○ - just providing them as a very basic review of what Dr. Smith covered in case they are helpful in preparing for boards, etc.

Drug(s)	Mechanism of Action	Physiologic Effects	Additional Notes
Ca ⁺⁺ channel blockers	Block inward movement of Ca++	Bradycardia, ↓ cardiac output, vasodilation	<u>Dihydropyridines</u> (amlodipine): effect on vasculature >>> heart; vasodilation
		May cause hyperglycemia (vs. hypoglycemia in B-blocker overdose)	Non-dihydropyridines (diltiazem, verapamil): effect on heart >>> vasculature; UR and contractility
Digoxin	Inhibits sodium-potassium (ATPase)	Bradyarrhythmias, heart blocks Yellow-green halos around objects	Labs - hyperkalemia
Alpha blockers	Antagonizes α1-adrenergic receptors	↓ peripheral vascular resistance (PVR) (vasodilation); ↓ blood pressure (BP) Reflex ↑ HR	
Hydralazine	Relaxes arteriolar smooth muscle; 个 intracellular cGMP	Vasodilation ↓ BP	Mechanism not completely understood
Phenylephrine	Pure alpha agonist	Vasoconstriction, ↑ BP No direct effect on HR	
Nitrates (nitroglycerine, nitroprusside), PDEI	个 intracellular cGMP	Vasodilation, smooth muscle relaxation ↓ BP	PDEI = phosphodiesterase inhibitor
Fenoldopam, Dopamine (low dose)	Dopamine D1 receptor stimulation	 → PVR primarily in renal capillary beds ↑ renal blood flow, natriuresis, and diuresis → BP 	

Drug(s)	Mechanism of Action	Physiologic Effects	Additional Notes
Doxazosin, prazosin	α1-receptor blockade –	Doxazosin, prazosin: smooth muscle relaxation in arterioles (alpha-1b receptors); Vasodilation and ↓ BP Alfuzosin, tamsulosin: smooth muscle relaxation in bladder neck and prostate (alpha-1a receptors)	
Physostigmine	Reversibly binds/inactivates acetylcholinesterase; 个 amount of acetylcholine at cholinergic synapse	SLUDGE/MUDPILES Muscle twitching/fasciculations	Used to manage and treat anticholinergic (antimuscarinic) toxicity and glaucoma
Edrophonium	Reversible acetylcholinesterase inhibitor 个 of acetylcholine at synapse, NMJ	个 muscle tone and strength; twitching SLUDGE/MUDPILES	No longer used for dx of myasthenia gravis Reversal of non-depolarizing neuromuscular blocking agents - however, neostigmine is preferred due to its longer duration of action
Donepezil	Centrally acting acetylcholinesterase inhibitor; relatively specific for ACHase in brain	Overdose can cause cholinergic crisis w/ SLUDGE/MUDPILES	Used in treatment of Alzheimer disease
Methyldopa	Alpha-2 agonism in the CNS to ↓ central adrenergic outflow	↓ PVR, ↓BP	Methyldopa is converted to alphamethylnorepinephrine in the central nervous system which then binds to alpha-2 adrenergic receptors in the brainstem

Remember, you got this!