

Autonomic Cardiovascular Physiology I and II

Connecting the Basic Science and Clinical Components

- Class materials (hereafter including PowerPoints, Handouts and Lecture Recordings) are distributed for the exclusive use of students in the Jerry M. Wallace School of Osteopathic Medicine. Student access to and use of materials are conditioned on agreement with the terms and conditions set out below. Any student who does not agree to them is prohibited from accessing or making any use of such materials.
- Any student accessing materials (1) acknowledges the faculty members' intellectual property rights and that distribution of the materials violates the CUSOM Copyright Policy; (2) recognizes the privacy rights of fellow students who speak in class; (3) accepts that distributing, posting, or uploading materials to students or any other third party not authorized to receive them or to those outside CUSOM is an Honor Code violation; and (4) agrees that the materials are to be accessed and used only as directed by the faculty member(s) teaching the course. Students are not permitted to take photographs or screenshots of any screens or projected materials during lectures, exams or quizzes. Audio recording are also not permitted outside of what is provided through the recorded Tegrity sessions.

Case #1

Case #1

 A 26-year-old male presents to the ED after taking a handful of unknown pills in a suicide attempt.

On arrival he is lethargic, confused, and unable to provide any medical history.

 He was seen at his PCP's office one week ago and his vital signs at that time were as follows:

• Pulse: 88

Blood pressure: 138/84

Respiratory rate: 18

Physical Exam

	Findings	
General Appearance	Lethargic, pale	
Vital Signs	Pulse 40; BP 80/46; RR 22; T 98.4; Pox 96%.	
HEENT	Mucosa dry, no thyromegaly; pupils midpoint	
Cardiovascular	Bradycardia; S1 & S2 noted. No murmurs, rubs or gallops	
Pulmonary	Bilateral wheezing	
Gastrointestinal	Abdomen soft and non-tender	
Extremities	Pale and slightly moist; weak peripheral pulses	
Neuro	Lethargic – oriented only to self; cranial nerves intact; moves all 4 extremities with normal strength	

EKG

Interpret the EKG

What component of the autonomic nervous system is most likely affected?

- A. Parasympathetic
- B. Sympathetic
- C. Enteric
- D. Both parasympathetic and sympathetic
- E. Both parasympathetic and enteric

What is the most likely agent he ingested?

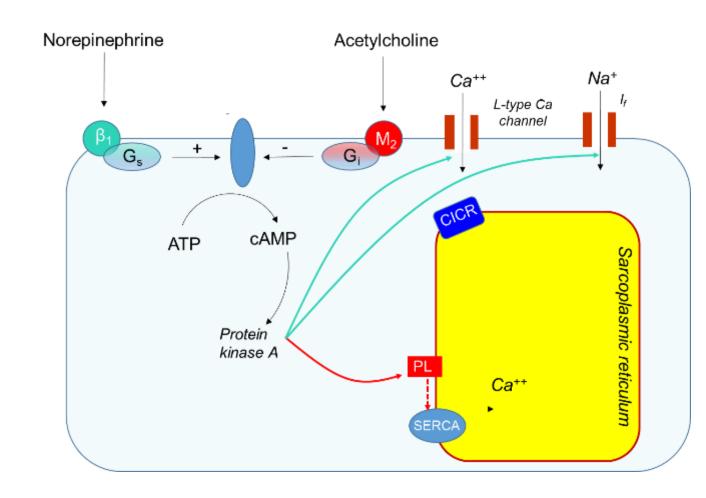
- A. Calcium channel blocker
- B. Beta blocker
- C. Digoxin
- D. Alpha blocker
- E. Angiotensin receptor blocker
- F. Hydralazine

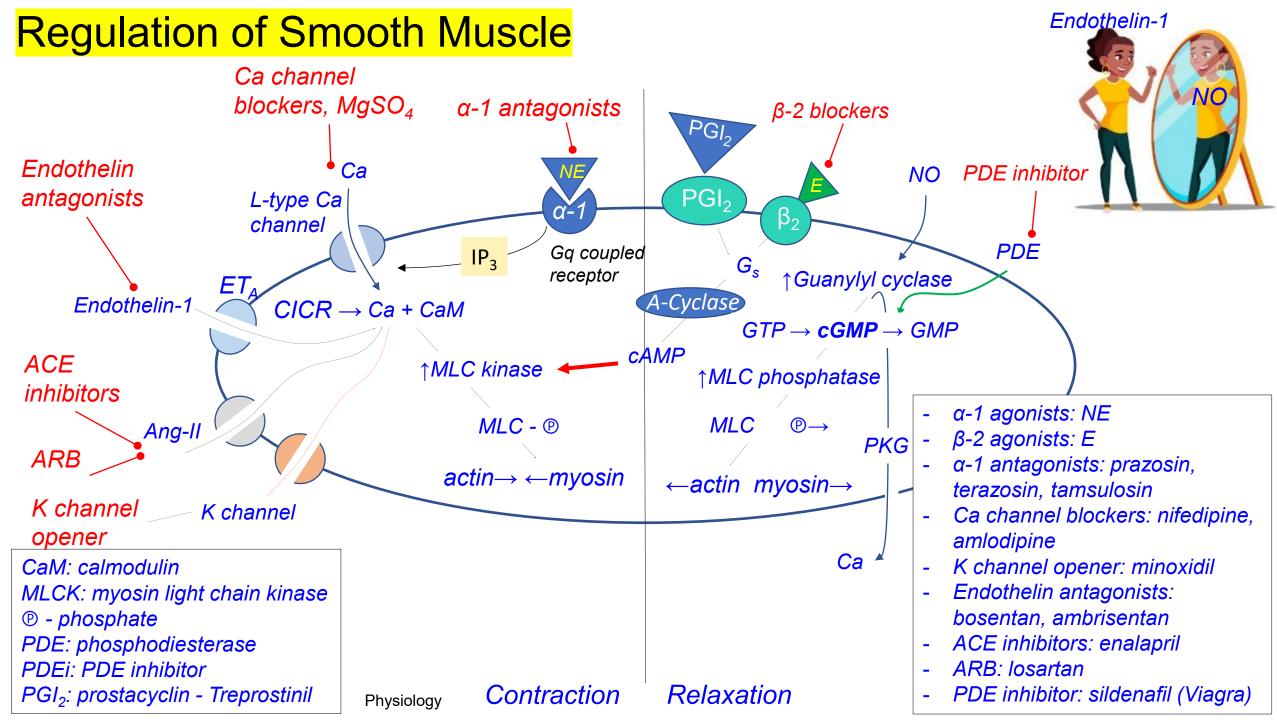
A medication is administered and results in the following change in his vitals.

What was the most likely agent administered?

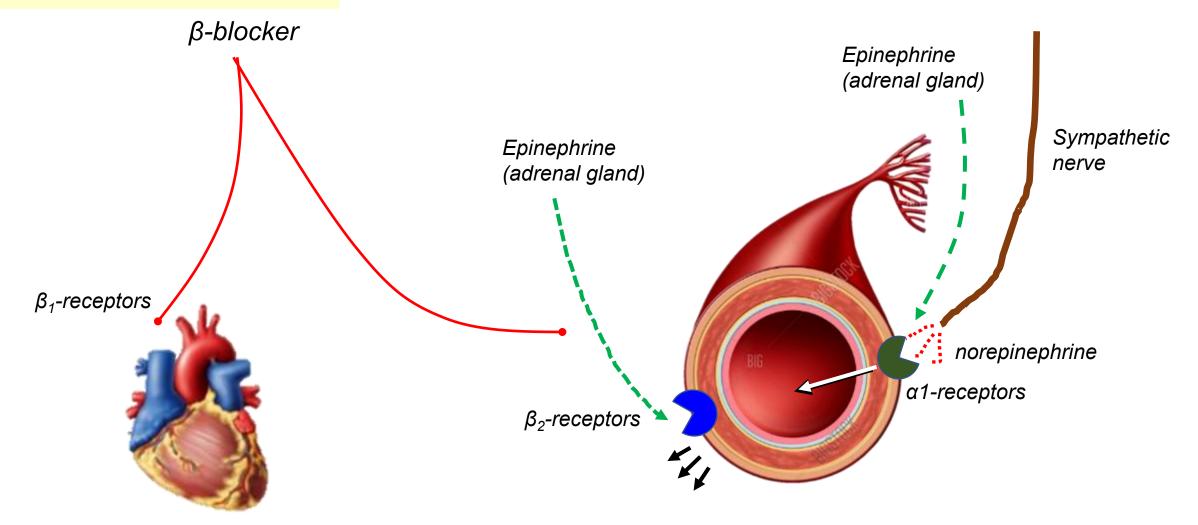
	At PCP one week prior	After ingestion	After medication administration
Pulse	88	40	60
Blood Pressure	138/84	80/46	90/54

- A. Phenylephrine
- B. Atropine
- C. Dobutamine
- D. Epinephrine


Beta Blockers


Modulate activity of myocyte & vascular smooth muscle contraction by ↓ Ca⁺⁺ entry into the cell

Blockade of which receptors result in the following?


- Bradycardia, ↓ contractility & hypotension
- Bronchoconstriction
- Vasoconstriction & ↑ vascular resistance

What is the mechanism?

Beta blocker effect

Hypotensive effect

- β_2 -receptors: activated by epinephrine

 α₁-receptors: require much higher amount of E, mostly under NE Loss of vasodilation (β 2) and presence of vasoconstriction (α 1) \rightarrow \uparrow TPR \rightarrow hypertension

Summary of Adrenoreceptors

Receptor	Second messenger	Primary effect
α-1 (peripheral vessel go from relaxed (α) to constricted (I)	↑ IP3 Sensitive more to NE Produce excitation (contraction/constriction)	 Location: vascular smooth muscle of the skin, splanchnic region, GI tract, bladder sphincter, iris Peripheral vasoconstriction Urethral constriction Pupillary dilation
α-2	↓cAMP Produce inhibition (dilation/relaxation)	 Relaxation or dilation of smooth muscles GI tract ↓ insulin release ↓ intestinal mobility
β-1 organ # 1 HEART	↑cAMP Very sensitive to NE and E Produce excitation	 Located: SA, AV nodes, heart ventricular muscles ↑ Cardiac contractility & HR ↑ renin release by JG cells of the kidney
β-2 (two legs, two hands, two lungs)	↑cAMP Produce relaxation (dilation) More sensitive to E than to NE	 Location: vascular smooth muscle of skeletal muscle, bronchial smooth muscle, walls of GI and bladder Peripheral vasodilation Bronchodilation ↑Glucagon release by alpha cells

What medication did the patient most likely ingest?

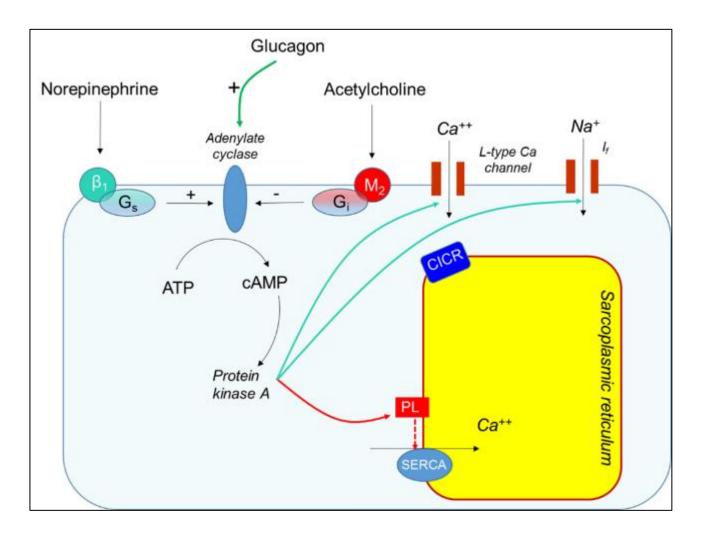
- A. Atenolol
- B. Esmolol
- C. Metoprolol
- D. Propranolol

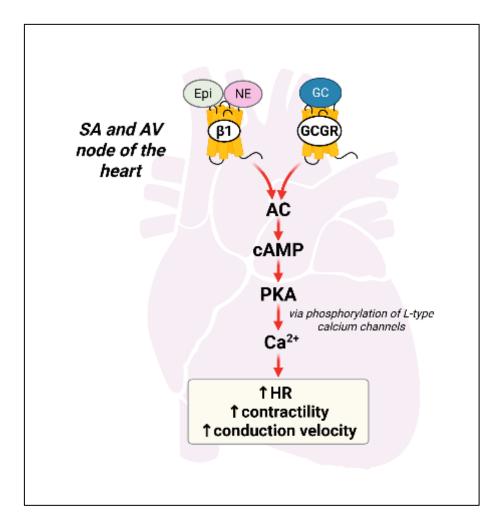
The patient was initially presenting:

Pulse 40: Bradycardia BP 80/46: Hypotension Lethargy + Wheezing

A Beta-Blockers that would cause both wheezing and lethargy would need to be able to i. cross the blood brain barrier and ii. target and block beta-2 receptors in VSMc in the lungs

<u>Drug Class</u>	<u>Cardioselective or</u> <u>Nonselective</u>	Cross BBB?	Target β2?	Match this case?
Atenolol	Cardioselective	No	No	No
Esmolol	Cardioselective	No	No	No
Metoprolol	Cardioselective	No	No	No
Propranolol	Nonselective	Yes	Yes	Yes


A 2nd medication is given resulting in the following change in his VS.


What physiologic mechanism would best explain these effects?

	After ingestion	After medication #1 administration	After medication #2 administration
Pulse	40	60	86
Blood Pressure	80/46	94/54	108/65

- A. Independent activation of cellular adenylate cyclase
- B. Increase in cellular cGMP
- C. Dopamine D1 receptor stimulation
- D. Stimulation of nicotinic receptors
- E. Direct inhibition of Na/K ATPase

- Independent activation of myocardial adenylate cyclase bypasses the impaired β-receptor
- Activated adenylate cyclase (AC) then converts ATP to cAMP

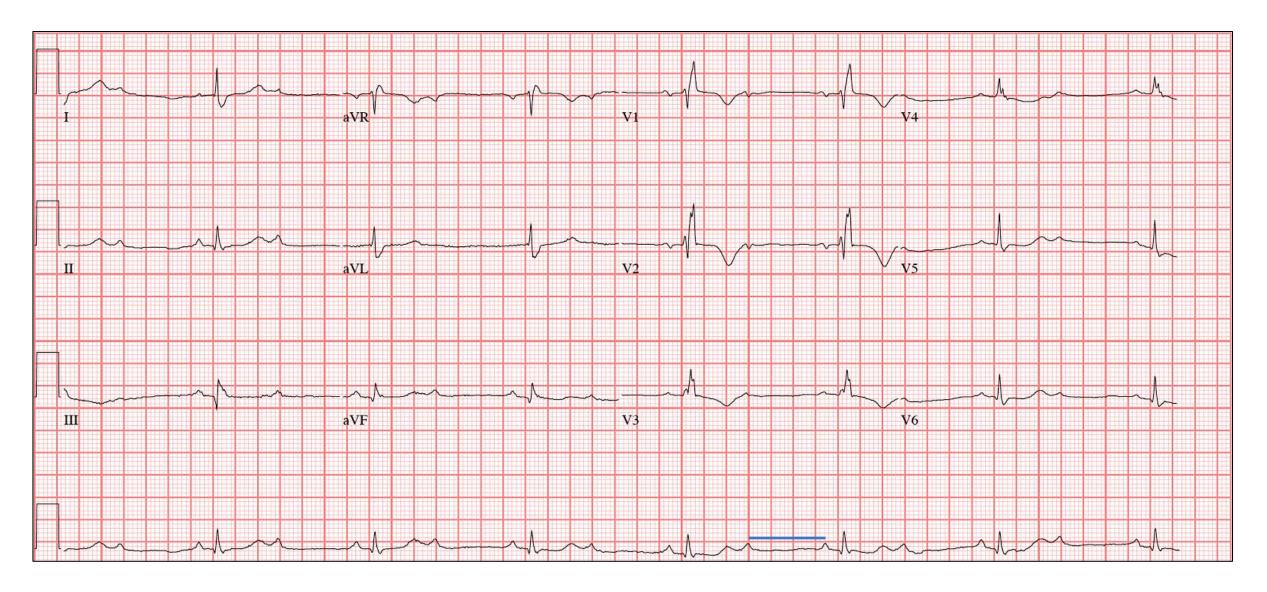
Summary – Beta Blocker Overdose

- A leading cause of poison center calls & a significant cause of severe toxicity & mortality
- Excessive β-blockade may lead to profound pump failure with bradycardia,
 ↓ contractility, and hypotension
- Primary organ system affected is the CV system; hallmark of severe toxicity is bradycardia & shock
- Nonselective β-blockers may antagonize the β2-receptor in bronchial smooth muscle causing bronchospasm
- Diagnosis of β-blocker toxicity primarily made on clinical grounds, including patient history, physical examination findings, and results of basic diagnostic testing
- Specific pharmacologic therapies directed at restoring perfusion to critical organ systems by improving myocardial contractility, increasing heart rate, or both.
 - Includes fluid resuscitation & administration of adrenergic agonists, glucagon, high-dose insulin.

Case #2

Case #2

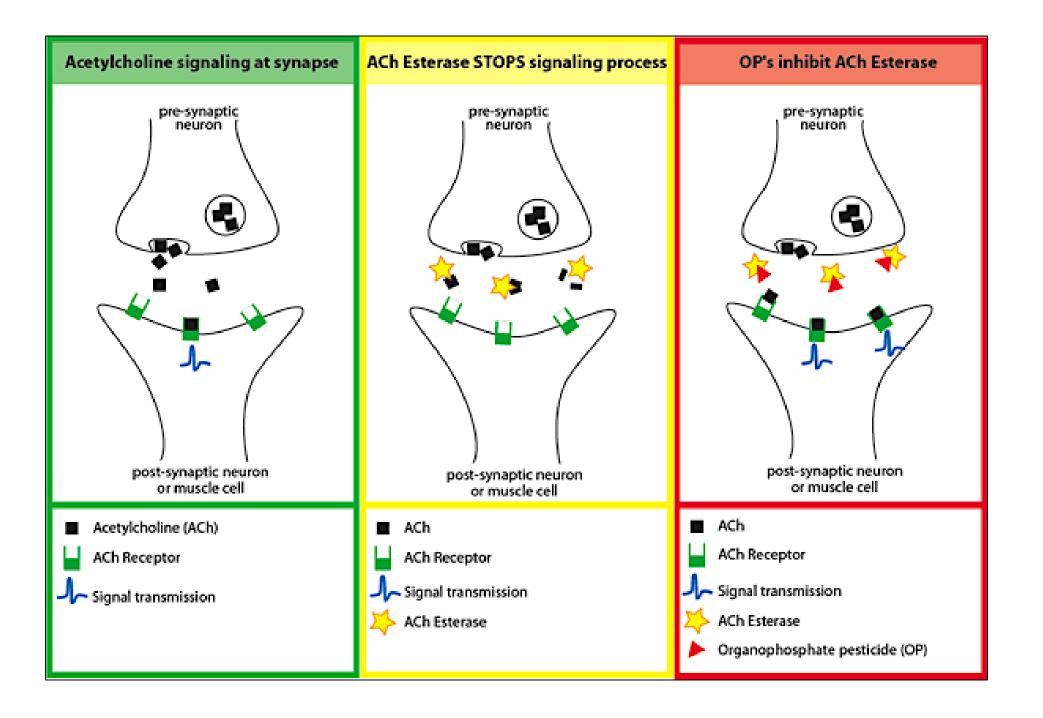
 A 42-y/o male is transported to the ED by EMS for confusion, vomiting, and shortness of breath.


His has a history of hypertension and depression but can't recall his medications.

His only allergies are to bee stings but otherwise has no other medical problems.
 He admits to working in the yard earlier in the day and going swimming in a local lake but does not recall any bee stings.

Physical Exam

	Findings	
General Appearance	Restless; appears to have difficulty breathing. Vomits and has an episode of diarrhea during triage	
Vital Signs	Pulse 42; BP 86/40; RR 24; T 98; Pox 90%	
HEENT	Pupils pinpoint with notable tearing. Oropharynx with copious secretions	
Cardiovascular	Bradycardia; S1 & S2 noted. No murmurs, rubs or gallops	
Pulmonary	Diffuse wheezing with harsh crackles noted at the bases	
Gastrointestinal	Abdomen soft with mild diffuse tenderness. Hyperactive bowel sounds noted	
Extremities	Pale; weak peripheral pulses	
Neuro	CN intact. No focal weakness but fasciculations noted	


Interpret the EKG

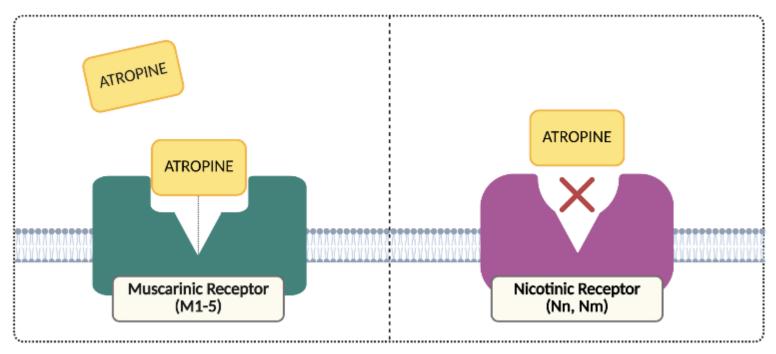
What component of the autonomic nervous system is most likely affected?

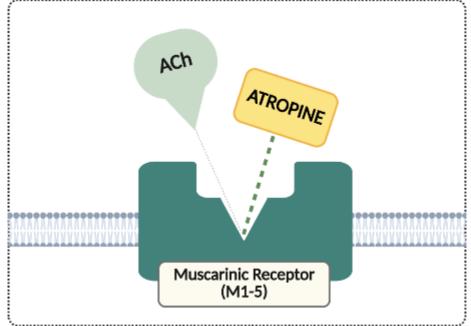
- A. Parasympathetic
- B. Sympathetic
- C. Enteric
- D. Both parasympathetic and sympathetic
- E. Both parasympathetic and enteric

Which of the following agents is most likely to cause his presentation?

- A. Alpha-1 receptor blocker
- B. Clonidine
- C. Cyanide
- D. Organophosphate
- E. Physostigmine
- F. Tricyclic antidepressant

An agent is administered IV resulting in the following: A decrease in oral secretions & pulmonary crackles and VS changes

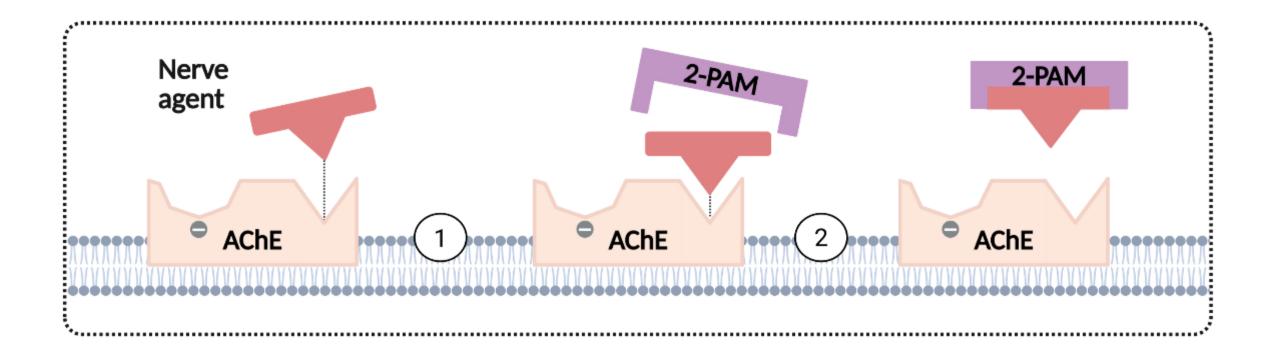

	Before administration	After medication administration
Pulse	42	58
Blood Pressure	86/40	94/50


Which agent was most likely administered?

- A. Flumazenil
- B. Epinephrine
- C. Norepinephrine
- D. Atropine
- E. Edrophonium

Atropine - key antidote

- Competitive antagonist of acetylcholine at central & peripheral muscarinic receptors
- Reverses effects of excessive cholinergic stimulation

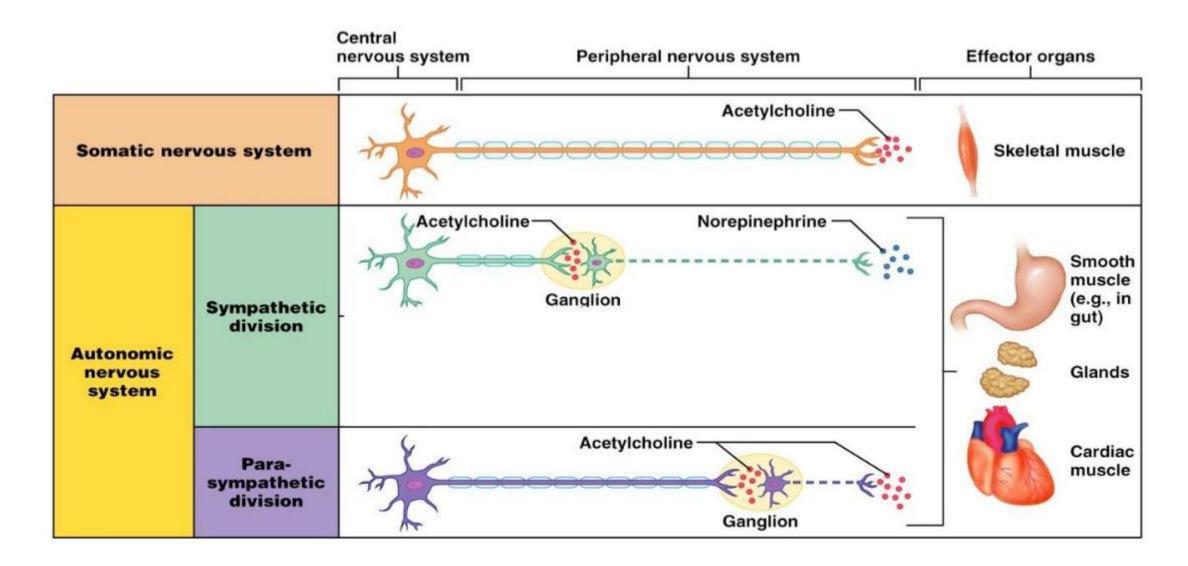


Based on autonomic pathophysiology, what other agent should be administered?

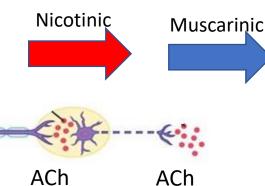
- A. Pralidoxime
- B. Physostigmine
- C. Donepezil
- D. Methyldopa
- E. Diphenhydramine

Pralidoxime

- Displaces organophosphates from active site of acetylcholinesterase
- Reactivates the enzyme


Compare & Contrast Our 2 Cases

Cholinergic Crisis 2º to Organophosphates		Beta Blocker Overdose	
Pulse	42	40	
Blood Pressure	86/40	80/46	
Pupils	Pinpoint; tearing	Midpoint	
Mucosa	Copious <mark>secretions</mark>	Dry	
Cardiovascular	Bradycardia	Bradycardia	
Respiratory	Harsh <mark>crackles</mark> at bases; wheezing	Wheezing	
Gastrointestinal	Mild tenderness; Hyperactive bowel sounds; vomiting; diarrhea	Soft, non-tender	
Neuro	Fasciculations	Lethargic, disoriented	


Summary - Organophosphates

- Organophosphate compounds are insecticides most commonly associated with systemic illness
- Organophosphates bind to and inhibit the enzyme cholinesterase; can be used as chemical weapons
- Inhibition of cholinesterase leads to acetylcholine accumulation at nerve synapses and NMJ, resulting in overstimulation of acetylcholine receptors.
- Acute poisoning results in CNS, muscarinic, nicotinic, and somatic motor manifestations
- Excess acetylcholine results in a cholinergic crisis that manifests as a central and peripheral clinical toxidrome (SLUDGE or DUMBELLS)
- Miosis & muscle fasciculations are considered reliable signs of organophosphate toxicity
- Atropine is the antidote for organophosphate poisonings. Atropine, a competitive antagonist of acetylcholine, will reverse the effects 2° to excessive cholinergic stimulation.
- Pralidoxime used to displace organophosphates from active site of acetylcholinesterase reactivates the enzyme.

Sympathetic, Parasympathetic, and Somatic Innervation

MUSCARINIC VERSUS NICOTINIC STIMULATION

Muscarinic effect signs (activation of parasympathetic system):

Bronchoconstriction

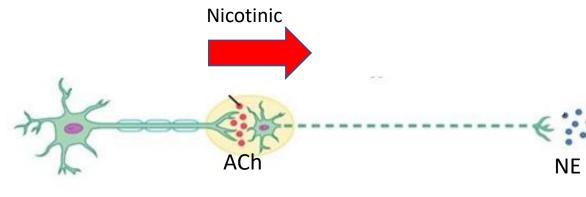
↑ bronchial secretion

Salivation

Lacrimation

Sweating

Nausea

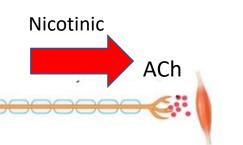

Vomiting

Diarrhea

Miosis (muscarinic sign)

Slow heart rate (?)

SLUDGE: effects indicative of massive discharge of the parasympathetic nervous system (salivation, lacrimation, urinary incontinence, defecation, GI distress, emesis (vomiting)


Nicotinic effect signs (activation both sympathetic and parasympathetic):

Activation both sympathetic and parasympathetic. Manifested by the signs which are originally get more sympathetic innervation Cyanosis, elevated blood pressure (nicotinic sign)

CNS effect (anxiety, restlessness, confusion, headache)

Somatic nervous system effects:

Twitching
Fasciculation
Muscle weakness

Nicotinic effect can be achieved by inhibition of acethycholinesterase → stimulation of all types of cholinergic neurons: sympathetic, parasympathetic, somatic

Thanks so Much!!!!