Evidence-Based Medicine: Clinical Utility of Conventional and High-Sensitivity Cardiac Troponin Levels

James J. Cappola, III, M.D., FACP

Chair and Associate Professor of Internal Medicine

CUSOM

October 2, 2025

Clinical Utility of Conventional and of highsensitivity cardiac troponins: Objectives

- Define cardiac troponins (cTn).
- List the differential diagnosis of an elevated hs-cTn.

 Define high-sensitivity cardiac troponins (hs-cTn).

Discuss how hs-cTn is used to dx
 MI in acute CHF or CKD.

- Describe how hs-cTn levels are used to diagnose acute MI.
- Describe how hs-cTn levels are incorporated into clinical decision making.

Let's see some patients . . .

Patient 1

A 65-year-old woman with a history of HTN and tobacco abuse presents with intermittent nausea and vomiting with shortness of breath for the last 12 hours.

On exam, she appears mildly short of breath and diaphoretic.

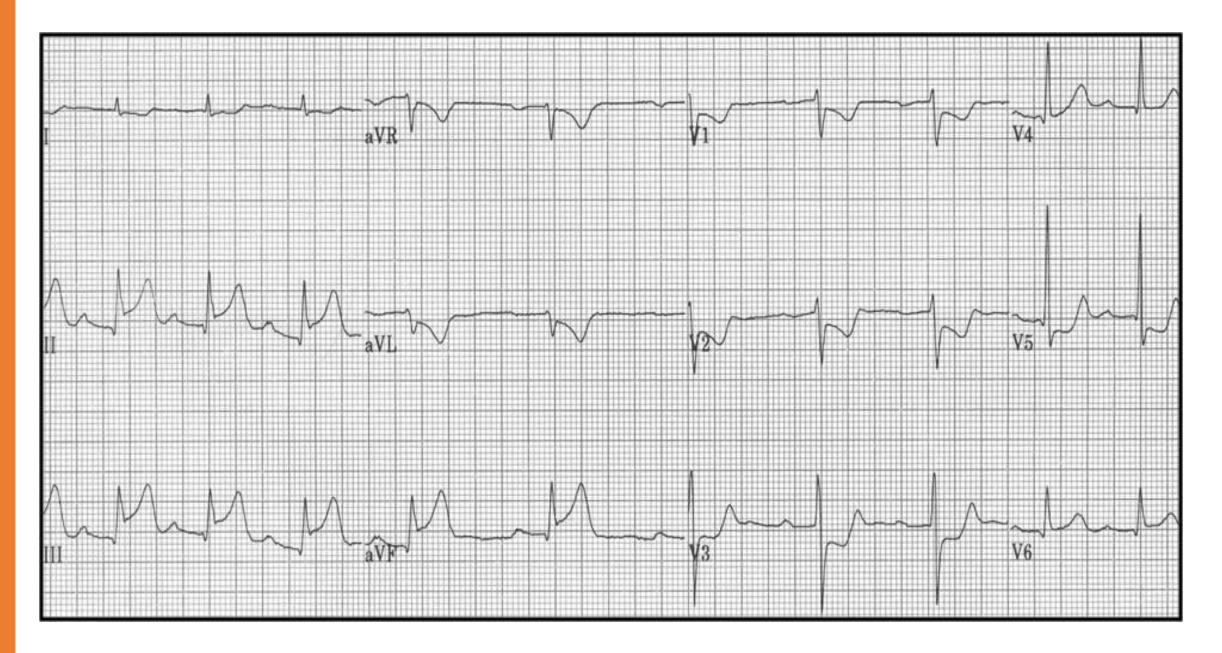
Vital signs: bp 110/60 p 116 RR 28 temp 98.6F O2sat 92% on RA

HEENT: dry mucous membranes

Car: r/r/r, tachycardic without murmur. JVP 7 cm (normal)

Lungs: bilateral rales

Abd: Soft with mild epigastric tenderness, no rebound and no organomegaly


Extr: no edema. Dp pulses 1+ bilaterally

CBC: wbc is elevated at 15,000 with a left shift H/H are normal Chem-8 is significant for a low potassium of 3.1

An EKG is performed. . .

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	12	246	180
Normal < 14 ng/L			

Patient 2

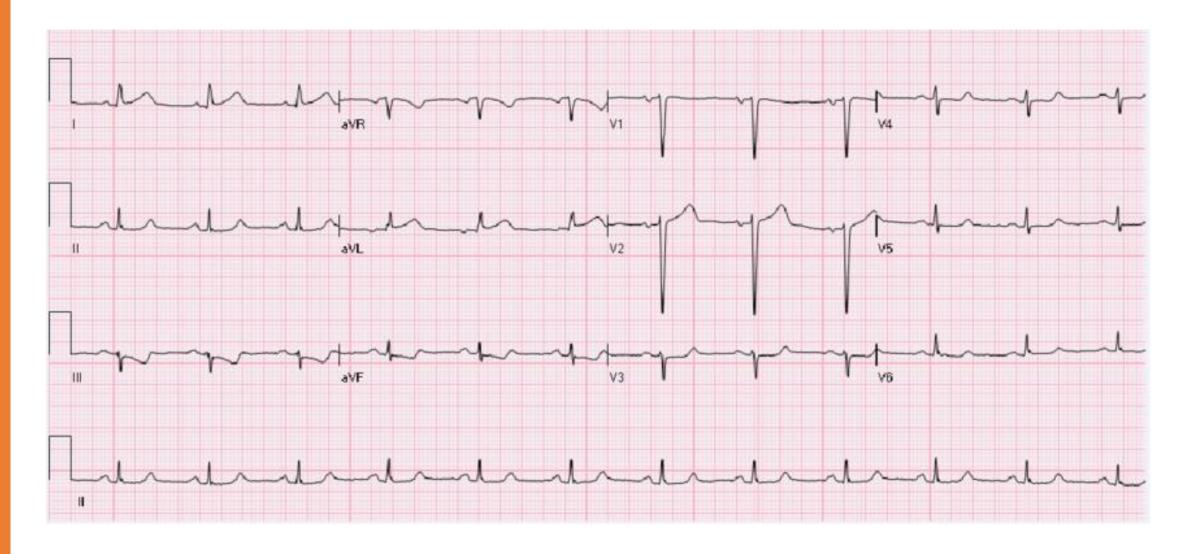
A 68-year-old man with a hx of tobacco abuse, HTN and type 2 diabetes presents to the ED with a two week history of worsening fatigue with exertion. He describes central chest pressure with radiation to his neck and left arm with nausea and shortness of breath. Walking up more than 10 steps at home precipates these symptoms. Resting about 10 minutes relieves these symptoms.

His appetite and weight have not changed recently. He denies fever, cough, changes in bowel movement or changes in urination.

On exam, he is resting comfortably.

Vital signs: bp 130/92 p 86 RR 14 temp 98.6 F O2 sat 95% on RA

JVP 8 cm (normal)


Car: r/r/r with a 3/6 systolic murmur at the right upper sternal border radiating to

the neck

Lungs: CTA An EKG is performed . . .

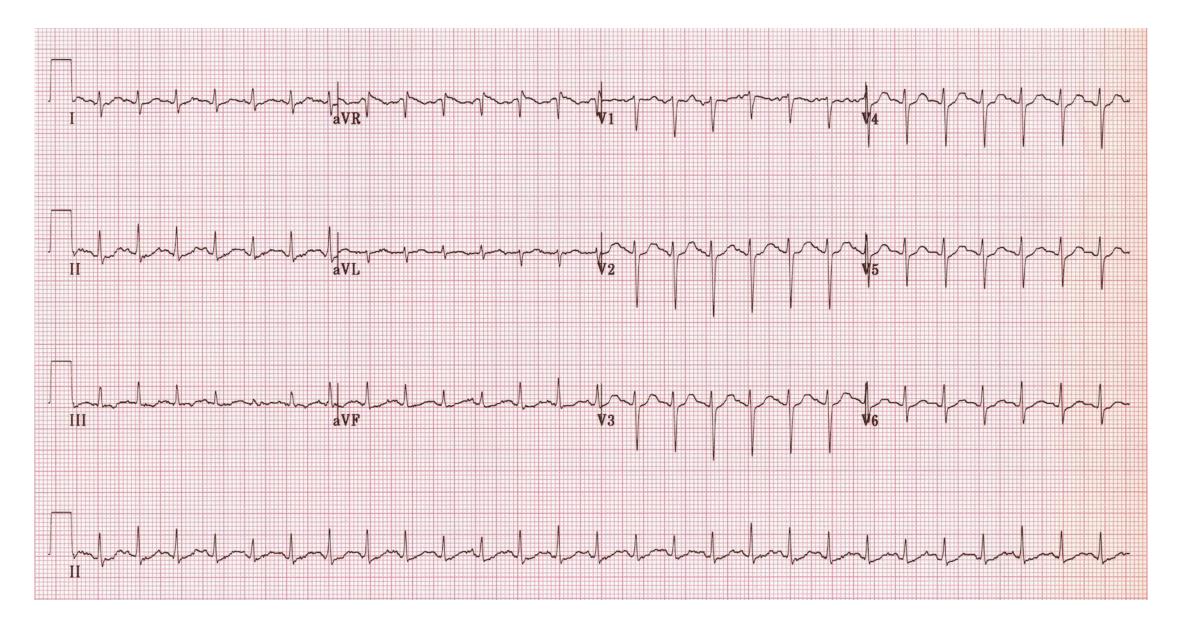
Extr: no edema: dp pulses trace B/L

Non-specific T wave changes

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	10	12	10
Normal < 14 ng/L			

Patient 3


A 72-year-old man residing in a nursing home presents to the ED with delirium. He has a hx CAD with MI in 1998, CKD, and a cholecystectomy in 2001 and a splenectomy in the 1980's. He is arousable to sternal rub only and has rapid shallow breathing.

On examination, vitals: bp 110/70 p 150 RR 30, and temp 100.8F with 02 sat 86% on RA. He has equal pupils with roving eye movements, a stiff neck, lungs with scattered rhonchi, tachycardia with a soft systolic murmur at the right upper sternal border and a nontender abdomen.

A CXR shows RLL and LUL infiltrates. A head CT is negative.

An EKG is performed . . .

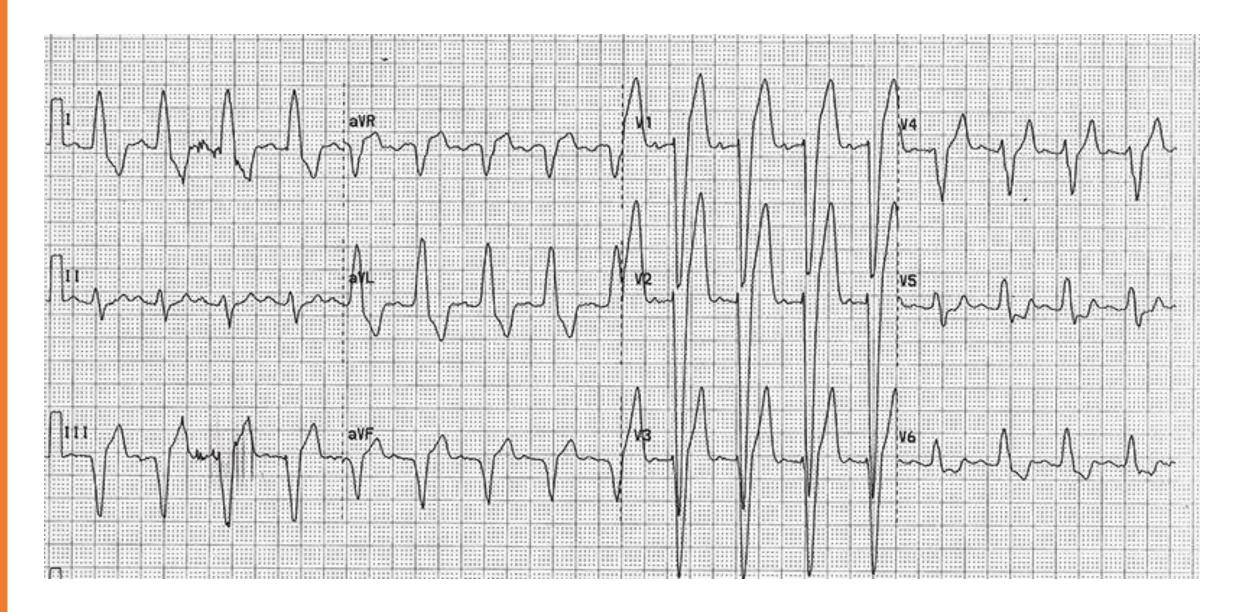
Sinus tachycardia

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from p	resentation	0	3 hours	6 hours
hs-cTnI (ng/	L)	23	26	21
Normal < 14	ng/L			

Patient 4

A 65-year-old man with history of HTN, hyperlipidemia and HFrEF presents with shortness of breath for the last 24 hours.


On exam: vital signs: blood pressure 100/60 p 96 RR 28 afebrile. O2 sat 90% on RA car: r/r/r with a 3/6 holosystolic murmur at the left sternal border radiating to the left axilla. JVP to angle of mandible

lungs: bilateral rales.

Extremities: 2+ edema bilaterally

An EKG is performed . . .

Sinus tachycardia, left bundle-branch block, LVH

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	25	60	48
Normal < 14 ng/L			

Patient 5

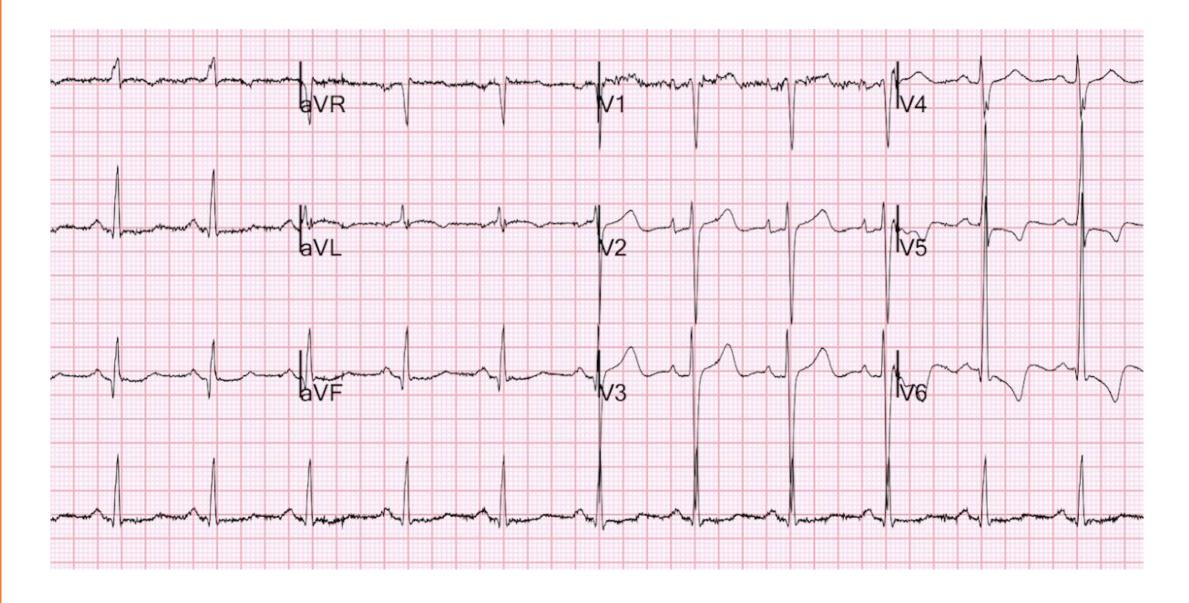
You are called to see a 61-year-old man with ESRD on hemodialysis three times per week to evaluate him for new onset shortness of breath. He describes forgetting to take his bp medication yesterday. He denies chest discomfort but is slightly nauseated.

On exam, vitals: bp 190/110 p 100 RR 22 temp 97.1F

JVP 9 cm at 45 degrees (upper limit of normal)

Car: r/r/r with S4

Lungs: bibasilar rales


Abd: soft, nontender

Extr: L arm with AV fistula with strong thrill and no warmth or erythema Legs

with 1+ edema B/L and dp pulses trace

An EKG is performed . . .

Sinus rhythm, non-specific ST and T-wave changes

After one hour of dialysis, his shortness of breath resolves . . .

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

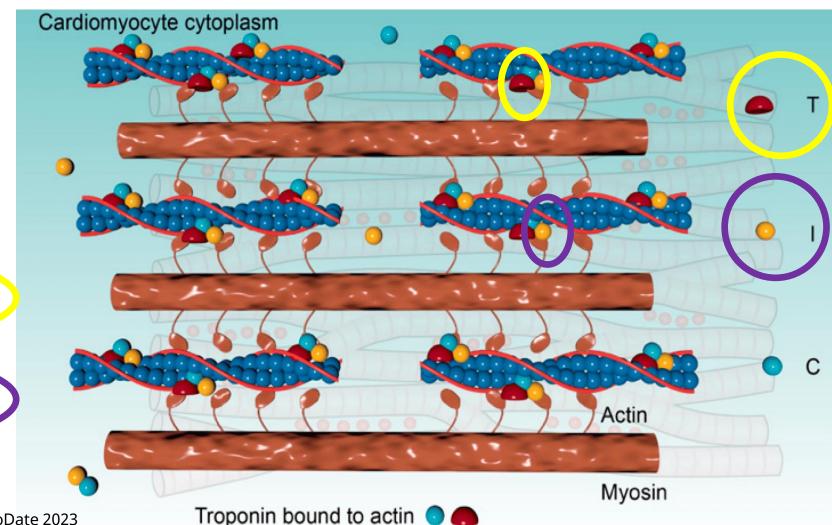
Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	43	39	45
Normal < 14 ng/L			

Clinical Utility of Conventional and of highsensitivity cardiac troponins: Objectives

- Define cardiac troponins (cTn).
- List the differential diagnosis of an elevated hs-cTn.

 Define high-sensitivity cardiac troponins (hs-cTn).

Discuss how hs-cTn is used to dx
 MI in acute CHF or CKD.


- Describe how hs-cTn levels are used to diagnose acute MI.
- Describe how hs-cTn levels are incorporated into clinical decision making.

What are Troponins?

- Regulatory proteins
- Unique to heart
- Control interaction of actin and myosin via calcium

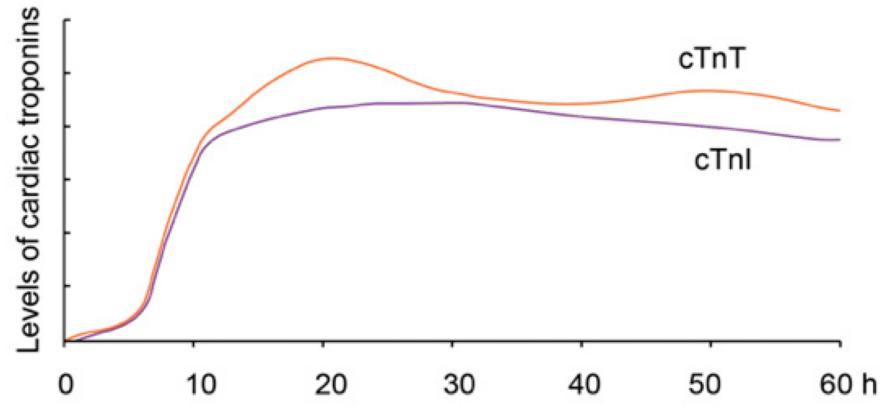
- Cardiac troponin T: cTnT
- Cardiac troponin I: cTnl

Troponin I and Troponin T have about the same clinical utility.

What are troponins?

Unique to the heart

 However, some patients with chronic skeletal muscle diseases have chronic elevations of cTnT with a normal cTnI


How are troponins used clinically to diagnose myocardial infarction?

What is Troponin?

When cardiac muscle dies, myocyte integrity is compromised and multiple intracellular enyzmes and proteins are detectable in the circulation, including troponin . . .

Troponin levels begin to rise two to three hours after myocardial injury

Allan S Jaffe, MD, David A Morrow, MD, MPH, UpToDate 2023

Time after myocardial injury

Measuring Troponin Levels

 Use of enzyme-linked immunosorbent assay (ELISA)

 ELISA uses monoclonal antibodies against cTnT or cTnI

• The upper limit of normal is defined as the 99th percentile in a given population

 Original troponin levels were measured in nanograms/ml with normal range of 0.0 to 0.04 ng/ml

 Normal Troponin I range per Cape Fear Valley Medical Center Lab is 0.000 to 0.045 ng/ml

Measuring Troponin Levels

- High-sensitivity cardiac troponin levels (either hs-cTnI or hs-cTnT) detect levels several magnitudes lower than then original cTn
- The upper limit of normal is defined as the 99th percentile in a given population

 Therefore, hs-cTn levels are reported as nanograms/L Therefore the normal range of high sensitivity cardiac troponins is less than 14 ng/L in most labs.

 Note, that most healthy people have detectable troponins when high sensitivity assays are used

Interpreting Elevated hs-cTn Levels

 hs-Tn above upper limit of normal (ie 99th percentile), usually 14 ng/L or • If hs-cTn is below the 99th percentile, a change of 50% of upper limit of normal (ie. change of 7 ng/L from baseline)

What is the ddx of an elevated high-sensivity cardiac troponin (hs-cTn)? Injury related to primary myocardial ischemia

Plaque rupture

Intraluminal thrombus

What is the ddx of an elevated high-sensivity cardiac troponin (hs-cTn)? Injury related to myocardial oxygen supply/demand imbalance

• Tachy/bradyarrhythmia

Hypertrophic cardiomyopathy

- Aortic dissection or severe aortic valve disease
- Cardiogenic, hypovolemic or septic shock

What is the ddx of an elevated high-sensivity cardiac troponin (hs-cTn)?

Injury related to myocardial oxygen supply/demand imbalance

Severe respiratory failure

 Hypertension with or without LVH

• Severe anemia

 Coronary endothelial dysfunction, spasm or dissection

What is the ddx of an elevated high-sensivity cardiac troponin (hs-cTn)? Injury not related to myocardial ischemia

- Cardiac contusion, surgery, ablation, pacing or defibrillation
- Rhabdomyolysis with cardiac involvement

Myocarditis

 Cardiotoxic agents (ex: anthracyclines, Herceptin)

What is the ddx of an elevated high-sensivity cardiac troponin (hs-cTn)?

Multifactorial or indeterminate myocardial injury

• Heart failure

Pulmonary hypertension

• Stress cardiomyopathy

Sepsis

Pulmonary embolism

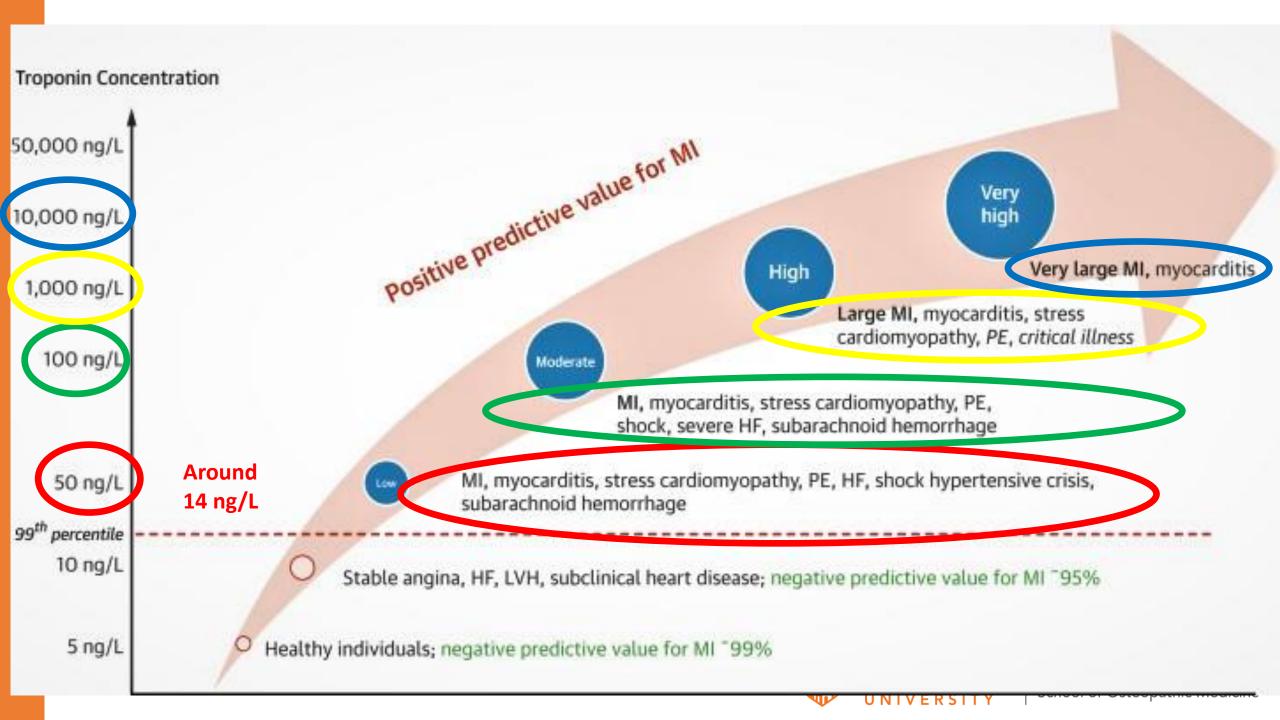
Critical illness

What is the ddx of an elevated high-sensivity cardiac troponin (hs-cTn)? Multifactorial or indeterminate myocardial injury

Renal failure

- Severe acute neurologic disease (ex: stroke, subarachnoid hemorrhage)
- Infiltrative cardiomyopathy (ex: amyloidosis, sarcoidosis)
- Strenuous exercise

hs-cTn levels *alone* cannot distinguish among these diagnoses . . .


Injury related to primary myocardial ischemia

Injury not related to myocardial ischemia

Injury related to myocardial oxygen supply/demand imbalance

 Multifactorial or indeterminate myocardial injury

Clinicians need more information from other sources . . .

"An abnormal hs-cTn is central to the diagnosis of AMI but MI is a clinical diagnosis that is not defined by troponin alone".

"An elevated hs-cTnI or T without other corroborating evidence is not sufficient for a diagnosis of AMI, even if a rise or fall is detected".

What is a significant change in troponin consistent with AMI?

- Biochemical definition of AMI with serial troponins:
 - Level > 99th percentile for the troponin assay being used

AND

 A rise and fall in serial troponins must be confirmed • If troponins remain < 99th percentile then troponin rise of 50% to 80% from baseline *may* also suggest AMI

What is a significant change in troponin in acute CHF?

 hs-cTn levels above the 99% percentile are common in acute decompensated CHF

 Serial hs-cTn levels can also demonstrate a rise and fall as in AMI

- hs-cTn levels can rise and fall in acute CHF due to:
 - Myocardial ischemia
 - Myocardial stress
 - Cardiomyocyte apoptosis
- Rise and fall in hs-cTn from acute CHF predict:
 - Adverse ventricular remodeling
 - Future hospitalizations for CHF
 - Death

What is a significant change in troponin in a patient with advanced kidney disease?

 hs-cTn levels are frequently > 99th percentile at *baseline* (ie. without acute MI) among patients with ESRD However, with serial testing, the absolute changes in hs-cTn levels are similar in AMI among patients with or without ESRD

The other thing to keep in mind . . .

Diagnosis of coronary artery disease without infarction.

VS

Diagnosis of acute myocardial infarction.

Can be two different questions

In other words, a patient can have coronary artery disease and cardiac ischemia but NO myocardial infarction and therefore have unremarkable troponin levels.

The most important tool you have to diagnose coronary artery disease and/or acute myocardial infarction is

You

Diagnosis of Coronary Artery Disease

Pretest Probability of CAD

- Ask three questions:
 - Is the chest discomfort substernal?
 - Are the pt's symptoms precipitated by exertion?
 - Does the pt experience prompt relief (ie. Within 10 minutes) with rest or nitroglycerin?

Pretest Probability of CAD

- Classify chest symptoms:
 - Three of three questions "yes" = typical angina
 - Two or three "yes" = atypical angina
 - One or none "yes" = nonanginal chest pain

Pretest Prob of CAD: Women

Age (yrs)	Asymp (%)	Nonang (%)	Atypical (%)	Typical (%)	
30-39	0.3	0.8	4.2	25.8	Gold standard of
40-49	1.0	2.8	13.3	55.2	cardiac catheterization
50-59	3.2	8.4	32.4	79.4	
60-69	7.5	18.6	54.4	90.6	

Diagnostic Strategies for Common Medical Problems. Second Edition. Black et al (eds) Philadelphia: American College of Physicians 1999.

Pretest Prob of CAD:Men

Age (yrs)	Asymp (%)	Nonang (%)	Atypical (%)	Typical (%)	
30-39	1.9	5.2	21.8	69.7	Gold standard of cardiac catheterization
40-49	5.5	14.1	46.1	87.3	
50-59	9.7	21.5	58.9	92.0	
60-69	12.3	28.1	67.1	94.3	

Estimating the probability of acute coronary syndrome in the emergency department from clinical history and initial troponin level . . . The HEART Score

The HEART Score

HISTORY

Data	Score
Highly suspicious	2
Moderately suspicious	1
Slightly suspicious	0

ECG

Data	Score
Significant ST depression	2
Nonspecific repolarization disturbance	1
Normal	0

AGE

Data	Score
<u>></u> 65 years	2
45-65 years	1
<45 years	0

CARDIAC RISK FACTORS*

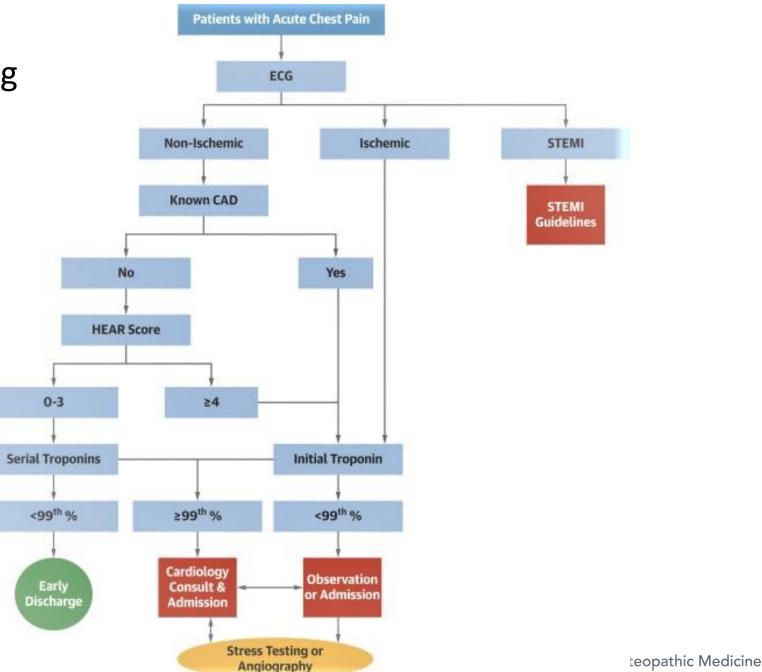
Data	Score
3 or more or know CV dz	2
1 or 2	1
None	0

- *bp > 140/90
- *LDL > 159 mg/dl
- *HDL < 40 mg/dl
- *Diabetes mellitus
- *Tobacco abuse
- *Family history

TROPONIN

Data	Score
> 2X normal limit	2
1-2X normal limit	1
≤ normal limit	0

Heart score and risk for ACS:


0 to 3 = low

4 to 6 = moderate

≥ 7= high

Incorporation of Troponins into clinical decision-making

Back to our patients . . .

Patient 1

A 65-year-old woman with a history of HTN and tobacco abuse presents with intermittent nausea and vomiting with shortness of breath for the last 12 hours.

On exam, she appears mildly short of breath and diaphoretic.

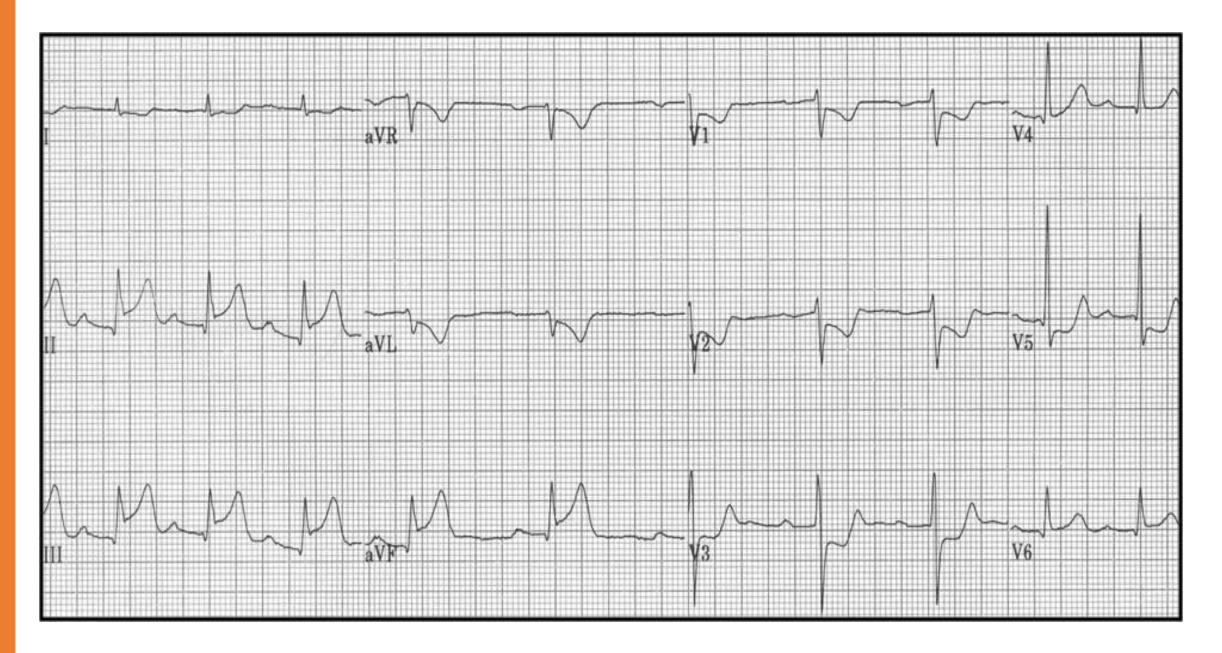
Vital signs: bp 110/60 p 116 RR 28 temp 98.6F O2sat 92% on RA

HEENT: dry mucous membranes

Car: r/r/r, tachycardic without murmur. JVP 7 cm (normal)

Lungs: bilateral rales

Abd: Soft with mild epigastric tenderness, no rebound and no organomegaly


Extr: no edema. Dp pulses 1+ bilaterally

CBC: wbc is elevated at 15,000 with a left shift H/H are normal Chem-8 is significant for a low potassium of 3.1

An EKG is performed. . .

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	12	246	180
Normal < 14 ng/L			

The patient is sent emergently to the catheterization lab for percutaneous coronary intervention . . .

Patient 1: Elevated troponin due to inferior wall STEMI from coronary thrombosis

Patient 2

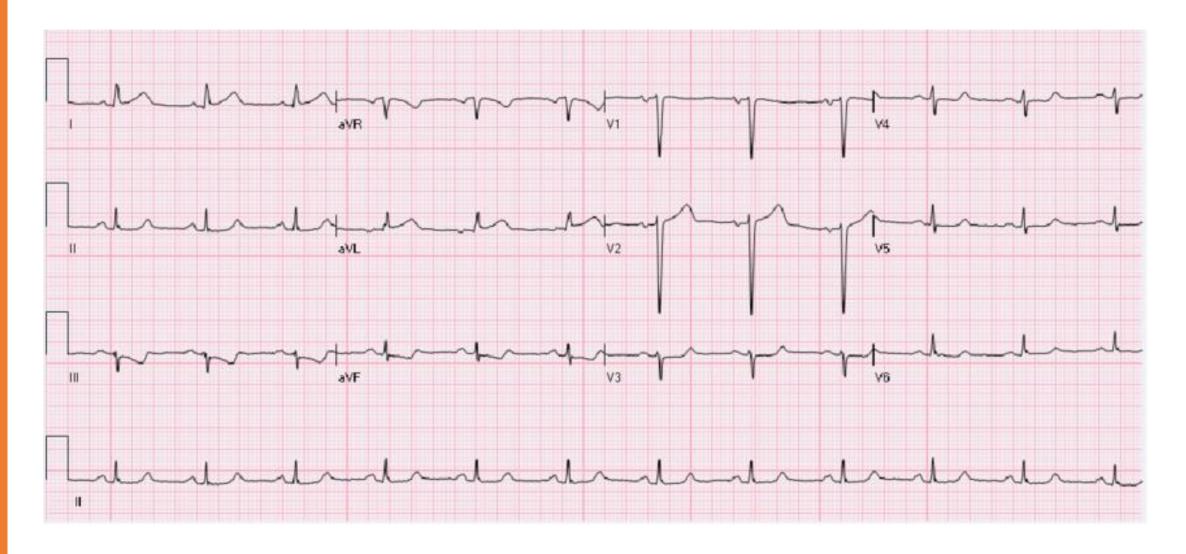
A 68-year-old man with a hx of tobacco abuse, HTN and type 2 diabetes presents to the ED with a two week history of worsening fatigue with exertion. He describes central chest pressure with radiation to his neck and left arm with nausea and shortness of breath. Walking up more than 10 steps at home precipates these symptoms. Resting about 10 minutes relieves these symptoms.

His appetite and weight have not changed recently. He denies fever, cough, changes in bowel movement or changes in urination.

On exam, he is resting comfortably.

Vital signs: bp 130/92 p 86 RR 14 temp 98.6 F O2 sat 95% on RA

JVP 8 cm (normal)


Car: r/r/r with a 3/6 systolic murmur at the right upper sternal border radiating to

the neck

Lungs: CTA An EKG is performed . . .

Extr: no edema: dp pulses trace B/L

Non-specific T wave changes

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	10	12	10
Normal < 14 ng/L			

Patient 2: Pretest Probability of CAD

- Ask three questions:
 - ✓ Is the chest discomfort substernal?
 - Are the pt's symptoms precipitated by exertion?
- ✓ Does the pt experience prompt relief (ie. Within 10 minutes) with rest or nitroglycerin?

Patient 2: Pretest Probability of CAD

- Classify chest symptoms:
 - Three of three questions "yes" = typical angina
 - Two or three "yes" = atypical angina
 - One or none "yes" = nonanginal chest pain

Pretest Prob of CAD:Men

Age (yrs)	Asymp (%)	Nonang (%)	Atypical (%)	Typical (%)	
30-39	1.9	5.2	21.8	69.7	Gold standard of cardiac catheterization
40-49	5.5	14.1	46.1	87.3	
50-59	9.7	21.5	58.9	92.0	
60-69	12.3	28.1	67.1	94.3	

Patient 2: HEART Score

HISTORY

Data	Score
Highly suspicious	2
Moderately suspicious	1
Slightly suspicious	0

ECG

Data	Score
Significant ST depression	2
Nonspecific repolarization disturbance	1
Normal	0

AGE

Data	Score
>_65 years	2
45-65 years	1
<45 years	0

CARDIAC RISK FACTORS*

Data	Score
3 or more or know CV dz	2
1 or 2	1
None	0

- *bp > 140/90
 - *LDL > 159 mg/dl
 - *HDL < 40 mg/dl
- *Diabetes mellitus
- *Tobacco abuse
- *Family history

TROPONIN

Data	Score
> 2X normal limit	2
1-2X normal limit	1
< normal limit	0

Heart score and risk for ACS:

0 to 3 = low

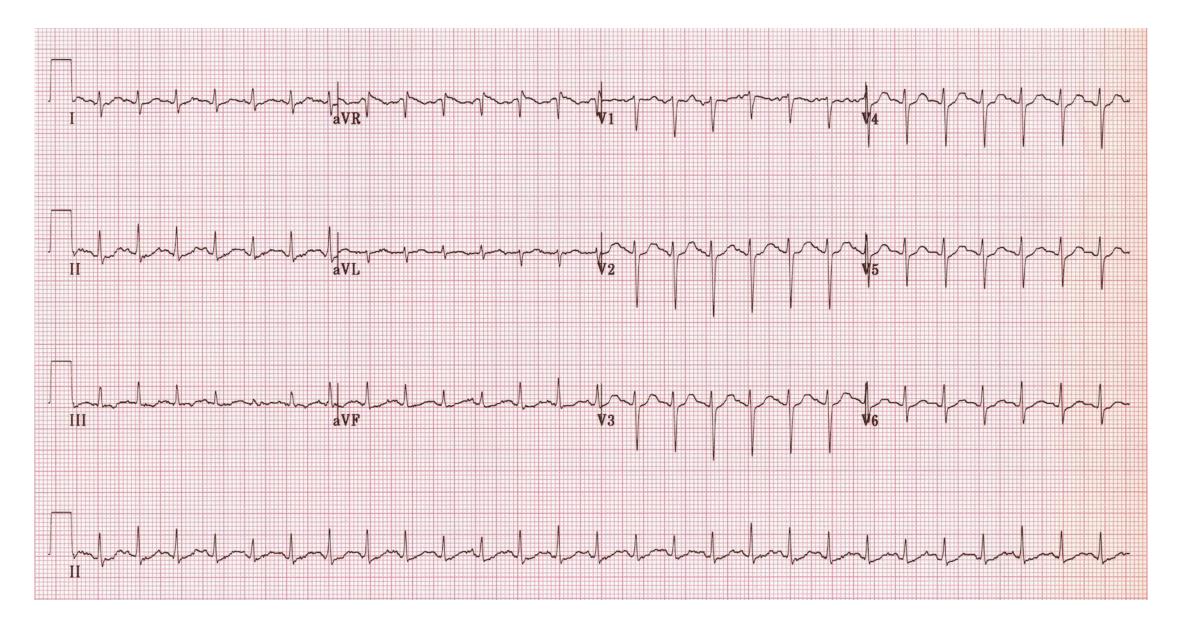
4 to 6 = moderate

≥ 7= high

The patient is referred to the cardiac catheterization lab. I left heart cath reveals multivessel disease and he is then referred for CABG.

Patient 2: Cardiac ischemia without infarction

Patient 3


A 72-year-old man residing in a nursing home presents to the ED with delirium. He has a hx CAD with MI in 1998, CKD, and a cholecystectomy in 2001 and a splenectomy in the 1980's. He is arousable to sternal rub only and has rapid shallow breathing.

On examination, vitals: bp 110/70 p 150 RR 30, and temp 100.8F with 02 sat 86% on RA. He has equal pupils with roving eye movements, a stiff neck, lungs with scattered rhonchi, tachycardia with a soft systolic murmur at the right upper sternal border and a nontender abdomen.

A CXR shows RLL and LUL infiltrates. A head CT is negative.

An EKG is performed . . .

Sinus tachycardia

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	23	26	21
Normal < 14 ng/L			

Persistent elevation of hs-cTnI without rise and fall

The patient is stabilized in the ICU and treated for septic shock.

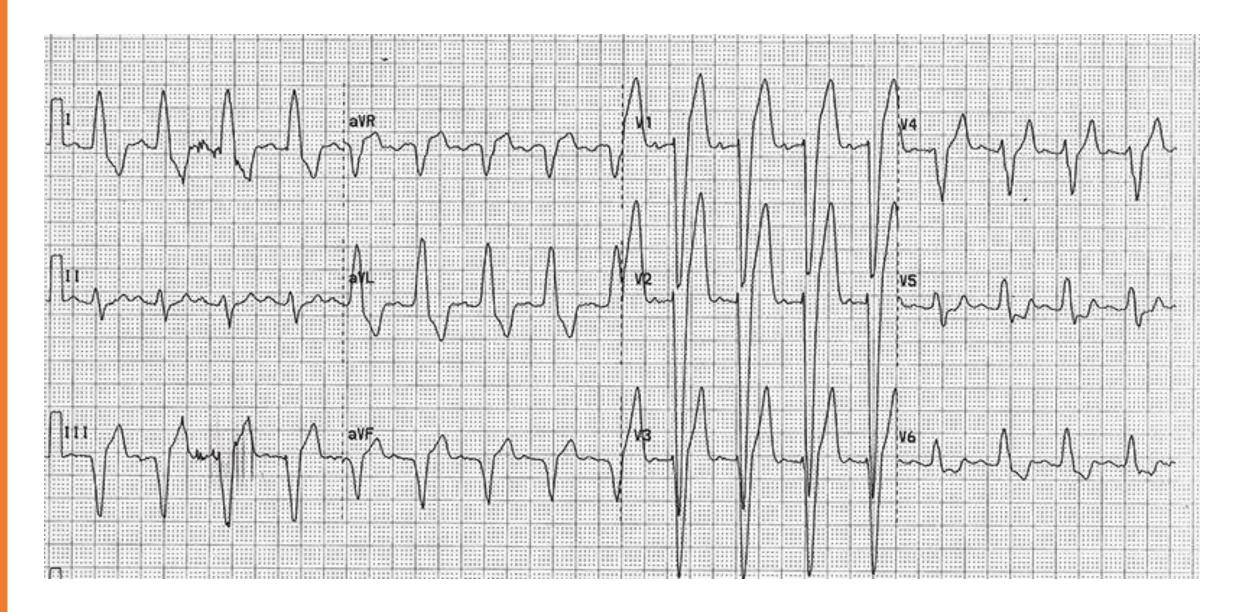
Four days later, a 2-D echocardiogram shows normal LV systolic function with LVEF 55% and no significant valvular disease.

Two weeks later before discharge, the patient has an adenosine cardiolite with reveals normal LVEF and no evidence of ischemia or infarction.

Patient 3: Elevated troponin from myocardial oxygen supply and demand mismatch from sepsis. No evidence of obstructive CAD.

Patient 4

A 65-year-old man with history of HTN, hyperlipidemia and HFrEF presents with shortness of breath for the last 24 hours.


On exam: vital signs: blood pressure 100/60 p 96 RR 28 afebrile. O2 sat 90% on RA car: r/r/r with a 3/6 holosystolic murmur at the left sternal border radiating to the left axilla. JVP to angle of mandible

lungs: bilateral rales.

Extremities: 2+ edema bilaterally

An EKG is performed . . .

Sinus tachycardia, left bundle-branch block, LVH

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	25	60	48
Normal < 14 ng/L			

Elevated hs-cTn with significant rise and fall . . .

He is treated for acute on chronic HFrEF.

He undergoes left heart catheterization which demonstrates nonobstructive CAD for which medical therapy is recommended. Left ventriculogram confirms global hypokinesis with LVEF 35%. In addition, he has severe mitral regurgitation.

He then referred for surgical mitral valve repair and cardiac pacer (ie. resynchronization therapy and AICD placement.

Patient 4: Elevated troponin from acute CHF in the setting of known HFrEF. No evidence of obstructive CAD.

Patient 5

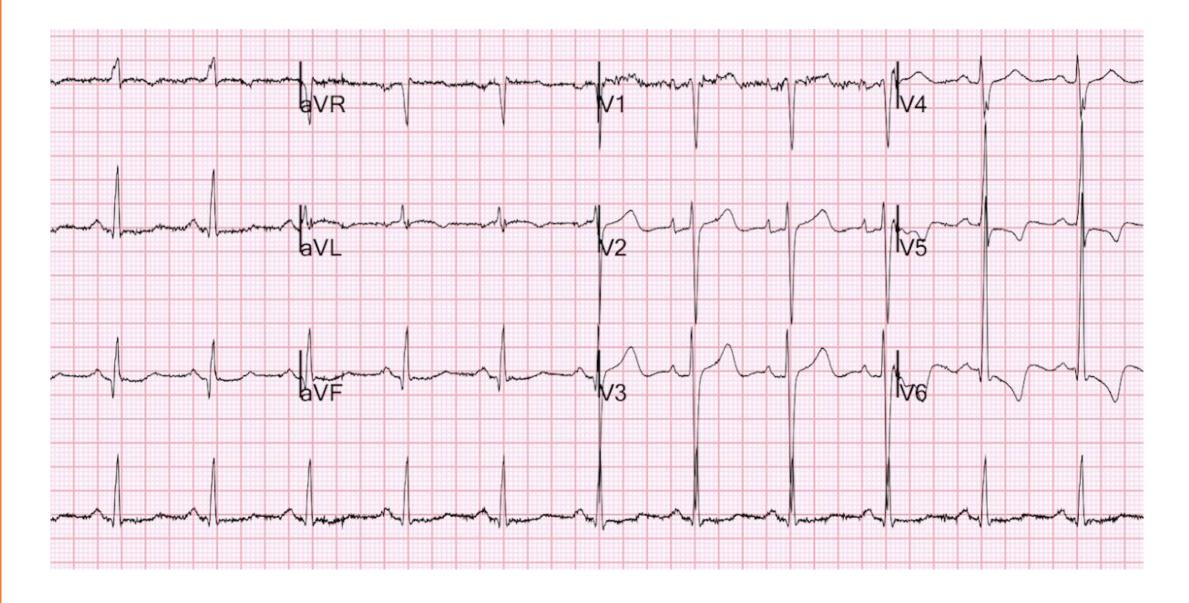
You are called to see a 61-year-old man with ESRD on hemodialysis three times per week to evaluate him for new onset shortness of breath. He describes forgetting to take his bp medication yesterday. He denies chest discomfort but is slightly nauseated.

On exam, vitals: bp 190/110 p 100 RR 22 temp 97.1F

JVP 9 cm at 45 degrees (upper limit of normal)

Car: r/r/r with S4

Lungs: bibasilar rales


Abd: soft, nontender

Extr: L arm with AV fistula with strong thrill and no warmth or erythema Legs

with 1+ edema B/L and dp pulses trace

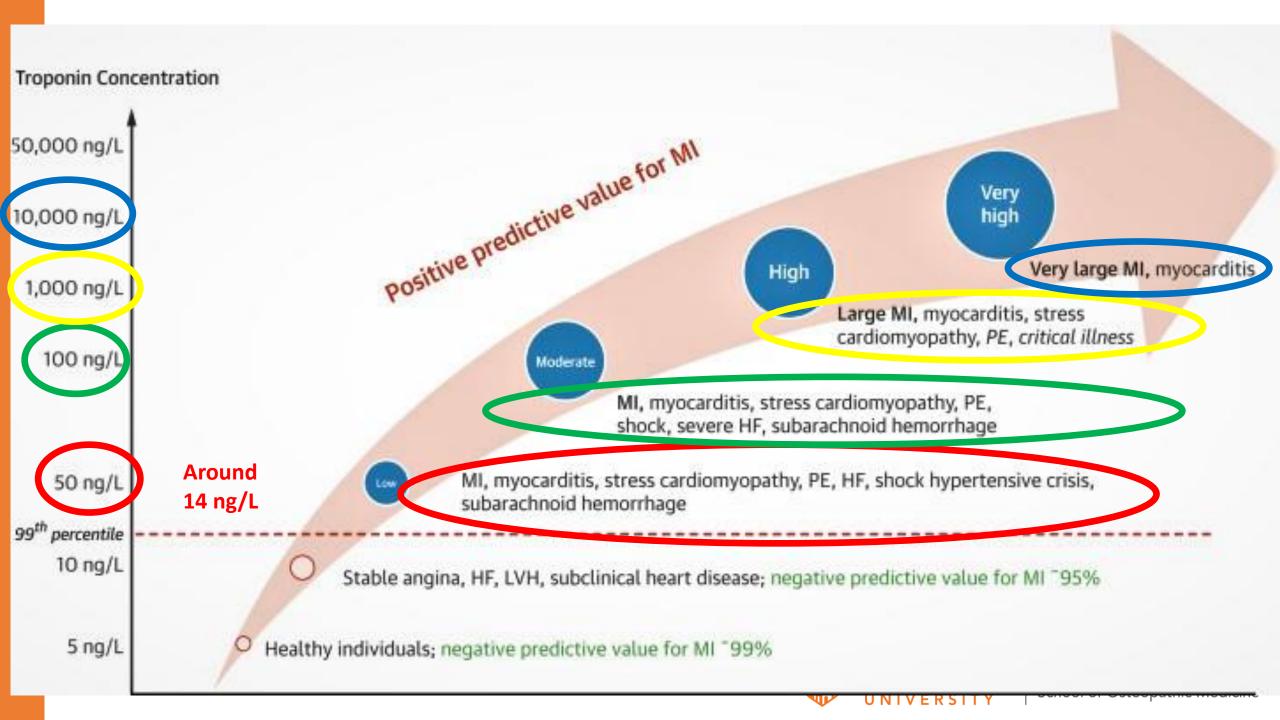
An EKG is performed . . .

Sinus rhythm, non-specific ST and T-wave changes

After one hour of dialysis, his shortness of breath resolves . . .

Serial high-sensitivity cardiac troponin I (hs-cTI) are as follows:

Time from presentation	0	3 hours	6 hours
hs-cTnI (ng/L)	43	39	45
Normal < 14 ng/L			


Chronically elevated hs-cTn without significant rise or fall . . .

Patient 5: Elevated troponin from CKD. Transient SOB from fluid overload. Consider work up for cardiac ischemia if not done in the last two years.

- Troponins are regulatory proteins, unique to heart which control interaction of actin and myosin via calcium
- Troponin levels begin to rise two to three hours after myocardial injury

- High-sensitivity cardiac troponin levels (either hs-cTnI or hs-cTnT) detect levels several magnitudes lower than then original cTn
- Upper limit of normal of hs-cTn is the 99% percentile which in most populations is around 14 ng/L

- Biochemical definition of AMI with serial troponins:
 - Level > 99th percentile for the troponin assay being used

AND

 A rise and fall in serial troponins must be confirmed • If troponins remain < 99th percentile then troponin rise of 50% to 80% from baseline *may* also suggest AMI

 Troponin levels are necessary but not sufficient to diagnose AMI or ACS • There is a wide ddx of elevated troponin levels . . .including rise and fall of hs-cTn in acute CHF and chronic elevations in ESRD

Clinical Utility of Conventional and High-Sensitivity Cardiac Troponin Levels: Summary and Conclusions hs-cTn levels *alone* cannot distinguish among these diagnoses . . .

Injury related to primary myocardial ischemia

Injury related to myocardial oxygen supply/demand imbalance

Injury not related to myocardial ischemia

 Multifactorial or indeterminate myocardial injury

Diagnosis of coronary artery disease without infarction.

VS

Diagnosis of acute myocardial infarction.

School of Osteopathic Medicine

Can be two different questions

In other words, a patient can have coronary artery disease and cardiac ischemia but NO myocardial infarction and therefore have unremarkable troponin levels.

The most important tool you have to diagnose coronary artery disease and/or acute myocardial infarction is

You

- Clinically estimate the pretest probability of CAD
- Use tools like the HEART score to aid clinical decision-making
- Always think of a ddx for your patient presentation and troponin results:
 - AMI/ACS
 - Sepsis
 - PE
 - Myocarditis

- Use information from other sources to make final diagnoses
 - Echocardiogram
 - Stress testing
 - Left heart catheterization

Questions?

Thank you!